Nth Cycle Wins NSF SBIR Grant

InteliSpark client, Nth Cycle, LLC has been awarded a phase I Small Business Innovative Research (SBIR) grant from the National Science Foundation (NSF) for their project titled, “Electrochemical Separation Device for Co-Ni Recovery from Li-ion Batteries”. This project will address a new source of strategic materials for the clean energy and electronics markets. Nth Cycle plans to provide a recycling technology for the li-ion battery market, helping to solve the supply crisis for cobalt in the electronics and clean energy sector.

The U.S. is a major consumer of cobalt, which is a critical component in rechargeable lithium-ion batteries. It is estimated that over the next five years, the rapid increase in electric vehicles on the road will cause a drastic shift in the market, becoming the largest and fastest growing end-use of this critical material. This increase in demand, combined with the unstable global supply and difficulties with scaling mining productions, puts cobalt supply at high risk. Discarded lithium ion batteries could be a viable secondary source of cobalt if viable recycling technologies were available. Achieving efficient, low-cost recycling of Li-ion batteries will facilitate a secure source of cobalt for U.S.-based manufacturers with large societal impact, offering a high net-benefit concerning air emissions and climate protection, and incentives for collecting high priority waste.

Currently, there are no viable alternatives for cobalt separation and capture, except for large, expensive, and energy consumptive hydrometallurgical and pyrometallurgical processes. While these techniques work well, they require high capital and material transportation costs. Nth Cycle’s technique provides a new and efficient method for separating and reclaiming cobalt oxide for direct reuse in advanced manufacturing, designed with a small footprint so that it can be added onto existing recycling and manufacturing processes to capture these metals, without large upfront capital cost. The anticipated results will include a 5-10x reduction in cost and 1-4x reduction in CO2 emissions compared to incumbent recycling technologies, ultimately redefining our current wastes as resources, providing a secure source of cobalt to the U.S. market.